
Apache James: more than
emails in the cloud

Ioan Eugen Stan
Berlin Buzzwords 2012

About myself

● Technology and Free Software Enthousiaste
● Apache James Committer
● Debian contributor and fan
● Fresh CTO for Axemblr - a company focused

on tools for the cloud
● former Fire Fighter Officer

Project overview and info

Apache James Project - provide a set of (Java)
libraries related to e-mail communication that
build into an advanced enterprise mail server.

Use Java (or JVM language) and Mail => try
Apache James components

Apache James Project

● Apache James Hupa - rich webmail client

● Apache James Protocols - lightweight framework for implementing mail
protocols (IMAP4, POP3, SMTP, etc.)

● Apache James Mailets - mail processing components

● Apache James Mime4j - library for parsing MIME documents (including
email)

● Apache James Mailbox - flexible mailbox storage

● Apache James jSPF - implements SPF (Sender policy framework)

● Apache James jSieve - implements Sieve mail filtering language

● Apache James jDKIM - implements DKIM

● Apache James Server - the "One (component) to rule them all"

● Other: MPT, Postage

Apache James Mailets

Mailet = email processing agent
Mailet = matcher + mailet
Mailets are:
● flexible and powerful
● alternative to Procmail
● James Server = Mailet container
● most of email processing is done in Mailets
● you can access the envelope

Apache James Mailets

There are several groups of Mailets:
● Mailet Base - useful for developing
● Standard Mailets
● Crypto Mailet
● jSieve Mailets

You can chain mailets to form complex logic.

Apache James Mailets

Samle Camel DSL for mailet processing:
● You define 'processors'
● Test for condition and dispatch the mail to

the right processor:
 <!-- If infected go to virus processor -->
 <mailet match="HasMailAttributeWithValue=org.
apache.james.infected, true" class="ToProcessor">
 <processor>virus</processor>
 </mailet>
(see mailetcontainer-template.conf file)

Apache James Hupa

● A rich webmail app written in GWT
● uses IMAP to access email
● access any IMAP account with Hupa

(James, GMail, Yahoo)
● Hupa Evolution - GSoC 2012 project to

improve Hupa
● functional email client
● lacks some common features (address

book)
● Live Demo http://james.zones.apache.org/

https://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/echo/1
https://james.zones.apache.org/

Apache James Hupa

More screenshots at: http://james.apache.org/hupa/screenshots.html

https://james.apache.org/hupa/screenshots.html

Apache James jSieve

● implements Sieve mail filtering language
(RFC 3028), plus extensions

● Sieve = limited programming language to
filter emails

● used in Sever to safely execute user scripts
● provides:

○ jSieve library to use in your JVM platform code
○ jSieve Mailet - enables server side filtering

○ jSieve utilities - useful, related stuff

Apache James jSPF

● A Java SPF implementation (RFC4408)
● SPF (Sender Policy Framework) is designed

to detect email spoofing (spam from
yourself)

● used by Server component
● ready for your code!

https://www.openspf.org/svn/project/specs/rfc4408.html

Apache James jDKIM

● Used to fight SPAM and phishing
● java DKIM (Domain Keys Identified Mail)

library - thank you Captain Obvious
● provides verification and signing for email

messages in your app
● provides Mailets for use in James Server
● pluggable - you can tweel almost every

behaviour

Apache James Mime4j

● java parsing library for email message
streams

● supports rfc822 and MIME format
● similar to java-mail but much MORE tolerant

with illegally formatted messages
● more lightweight than java-mail
● two parsing API's for your convenience:

○ event driven using MimeStreamParser (SAX style)
○ iterative using MimeTokenStream

Apache James Protocols

● lightweight, generic framework for
developing mail protocols

● not bound to any socket implementation
● has a fast Netty implementation
● implementation for

○ SMTP with hooks for user extension code
○ POP3
○ IMAP4
○ LMTP

● easy to implement your own line based
protocol

Apache James Mailbox

● Implements a Email Storage
● Used by James Server to store email
● Can be used by other applications to

implement Mailbox Pattern
● 1 API, 4 implementations:

○ JPA, for database storage (MySQL, Postgres,
Apache Derby - default)

○ Maildir - *NIX systems only
○ JCR - Java Content Repository (Apache Jackrabbit)
○ Apache HBase backend

● Integration with Lucene (IMAP SEARCH)

https://www.mindspring.com/~mgrand/pattern_synopses3.htm#Mailbox
https://db.apache.org/derby/
https://jackrabbit.apache.org/

● HBase client - supply an hbase-settings.xml
config and you are ready to go

● Simple schema:
○ JAMES_MAILBOXES
○ JAMES_MESSAGES
○ JAMES_SUBSCRIPTIONS

● GSoC 2012 project: Distributed mailbox
indexing (Lucene HBase integration) to
provide search for messages stored in
HBase mailbox

Mailbox HBase details

https://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/mihaisoloi/1
https://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/mihaisoloi/1
https://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/mihaisoloi/1

Mailbox HBase schema

Apache James Server

● The Apache James Project's "Flag Ship"
● Uses all other James artifacts and more
● Spring based
● Available in binary forms:

○ WAR
○ ZIP standalone app
○ Debian *fat* package (in progress)

● works out of the box with Apache Derby as
mailbox and user/domain store

● unpack, basic config, start sending email (5-
10 min set-up)

James 3 architecture

How to scale James

Scale storage:
● JPA mailbox with sharding ?!?
● JCR mailbox with clustering ?!?
● use HBase mailbox implementation
Scale processing:
● use GreyMatter - Akka~Mailet integration
● use multiple James instances*
● combine the above approaches

* requires distributed mailbox locking and UID generation - Zookeeper based
implementation progress

https://github.com/pongr/greymatter

Anatomy of Email - RFC 5322

From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".

Find 5 similarities

Find 5 similarities take 2

Final notes

Respect the firefighters!

Final slide

Thank you !
Questions/Comments?

Applause !?

Contact: ieugen@apache.org

